
© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 1 of 11 Version 0.1

From a Sow's Ear to a Silk Purse
Making the most of what you've got in software testing

Abstract:

The test team has a greater influence on the success of testing than any single process, tool or technique. Yet,
under-resourced and over-stretched, it can be a source of weakness. This paper outlines some effective techniques
to help get the best out of your team, without increasing your budget or finding fewer bugs. Staring with an approach
that enables a team to find and set aside time to spend on process and skills improvement, the paper looks at
automating common tasks and using more efficient and effective test techniques. After outlining the characteristics of
a process of continuous improvement and ways to influence it with effective communication, the paper concludes
with a brief study of cheap tools and web-based information sources.

Author: James Lyndsay, Workroom Productions Ltd.

James is an independent test strategist, based in London. He's spent more than 10 years in software testing and has
been the principal consultant at Workroom Productions since its formation in 1994. As a consultant, James has
encountered a wide range of working practices, from rapidly evolving Internet start-ups to traditional large-scale
enterprises.

James is a director of The Manual (http://www.the-manual.org/), a not for profit organisation dedicated to gathering
and publishing basic skills.

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 2 of 11 Version 0.1

1. Introduction .. 3
2. Finding the time.. 3
3. Automation... 5
4. Techniques.. 6
5. Ongoing improvement .. 6
6. Communication .. 8
7. Low-cost, high-value resources... 9
8. Conclusion.. 10
9. Appendix and references... 11

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 3 of 11 Version 0.1

1. Introduction
The test team has a greater influence on the success of testing than any single process, tool or
technique. Yet, under-resourced and over-stretched, it can be a source of weakness. While the team can
be strengthened by automating some tasks and using effective techniques, long-term strength and
resilience comes through encouraging a process of continuous improvement supported by effective
communication. Test teams should look to do better testing, not more testing.

2. Finding the time
Software is complex. Making it is a creative process. Internal deadlines creep towards immovable
external limits, and within all this, testing can be a weak solution to an open-ended problem. There
never seems to be enough time to test adequately – let alone to pause long enough to make
improvements.
However, time-savings can be found. Like money, it is easier to fritter away little bits of saved time
than it is to put it aside for later use. By recording the time that has been saved in a time bank, it can be
ring-fenced for later use.

2.1. Common time savings
Even efficient, well-run teams have opportunities to find time here and there – perhaps as a result of a
one-off event rather than a significant, systematic saving. Often, the most immediate way to save time
is to cut down on time spent in meetings – five or ten minutes here and there can soon add up.

2.1.1. Meetings
Although communication is vital (see below), some time spent in meetings may be better spent on
another task. It is worth looking out for bad habits; a habitual length, habitual participants, the same
issues discussed in the same way can all be pointers to a self-sustaining meeting. There are a variety of
techniques that can be used inside and outside the meeting to reduce the time spent and concentrate on
effective communication:

• Occasionally vary meeting lengths and frequencies. If a shorter or less frequent meeting is
still useful, it may be possible to make the change more permanent. Try doing a 30-minute
meeting in 20, or a 60-minute meeting in 45.

• If your meeting commonly overruns, or starts late, recognise this and offer incentives for a
prompt start or finish. Having staggered finish times can allow a specialised sub-group to
focus and carry on alone.

• Introduce techniques to move the meeting onward if it gets bogged down. In particular, if an
issue causes conflict between some, but not all of the participants, it may be worth resolving
outside.

• If the meeting has a few active participants, and many people who simply attend, consider a
different approach.

• Occasionally review the purpose and scope of the meeting. If it is trying to fit too many
requirements, consider splitting it into smaller, shorter meetings. It may also be possible to
bring together two meetings with similar purposes and participants.

2.1.2. Streamlining and Drudgery Avoidance
Existing processes can be streamlined, and dull, repetitive processes can be automated. However, this
generally needs some time invested in analysis and tool creation. If there is an existing effort to sort a
process problem out, then the time saved is available for banking. If not, it may be worth waiting until
some time has been banked before attempting to gain more time by improving a failing process.

2.1.3. Pitfalls
Take a moment to verify that the time you’re saving is a genuinely available. It’s easy to try to grab
extra time, rather than find time that could be better spent elsewhere. If you take time from otherwise
effective tasks, you may reduce the effectiveness of those tasks – and spend more time sorting out
problems than you gained in the first place.

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 4 of 11 Version 0.1

Note also that unless the team is motivated to spend their own free time on finding improvements, time
spent during lunchtimes and working late is time stolen, not saved.

2.2. Using a time bank
Make your team aware that you’re trying to find some time – and that the time found will be set aside
for making things better, not for more testing or management. Give them a date on which you’ll use
this time – preferably a date when a more urgent task won’t get in the way, so avoid deadlines and
delivery dates.
Somewhere the whole team can see it, write up an accumulating total of time saved, over a period
leading up to your set date. A week works well. Five minutes saved by one person goes up as five
minutes; five minutes saved by ten people goes up as fifty. On the appointed date, use the time –
preferably take the whole team away from the test area and its distractions for as much time as you’ve
banked, split between the team. If your team of six have banked an hour over a week, that’s ten
minutes – but the duration is less important than the opportunity to redirect the team’s attention from
the tasks at hand to longer-term goals.
Initial use of time from a time bank might be to identify a process improvement or a tool that would
help save / find more time; the simpler, the better. Time accumulated in the bank after this
identification can be used to achieve this saving, and the saving itself banked for further use.
A time bank is, of course, an illusion – time saved can’t be banked to be withdrawn later. However, the
metaphor can help to isolate time away from day-to-day activity, and can help justify the use of the
time both inside and outside the team. The gradual increase of time in the bank can give the team a
sense of ownership, and a reward when they take the time to improve their processes and skills.
Finally, because it is time saved, rather than time taken from productive tasks, it is perhaps easier to
take a greater risk with the return on the investment of time.
You may find that a time bank is a useful tool to keep running – and it can certainly provide interesting
metrics. However, habit can make it less effective and it is less intrusive to introduce a time bank as an
agent, and enabler, of change.

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 5 of 11 Version 0.1

3. Automation
There is more to automation than capture/replay tools. Introducing simple automation not only saves
time, but can improve accuracy and flexibility. Good places to look for tasks that can be helped by
automation include:

• Tasks that are prone to ‘finger trouble’ errors – i.e. setting up an interrelated data set for a test.
• Tasks where the same data, or variants, are used many times – i.e. tests against different

configurations.
• Tasks where finding out something about a test involves poking around inside a database – i.e.

looking for all data that should have been retrieved.
• Tasks where many similar things have to be compared, looking for one rare difference – i.e.

checking environment changes.

Some tools are best built from scratch by the test team (spreadsheets are a good platform for this).
However, it may be more productive to spend time looking at open source tools, or tools re-purposed
from elsewhere in the organisation.
Some useful ideas for testing tools include:

• Data load and examination tools. Most databases come with tools that allow tables to be
loaded from external data sets. Being able to reloaded tables with clean data can help reduce
test errors, while tools that allow the data structure and contents to be queried are vital to
diagnostic work and aiming re-testing. TOAD (Oracle), PHPMyAdmin (MySQL) and
PHPPgAdmin (PostgreSQL) are examples of tools that can greatly help while testing systems
that use databases, while Excel and Perl are both strong tools for working with flat files. For
systems that use proprietary data storage, you may be able to share tools with the coders – and
if the coders have no tools, they may be grateful of a collaborative offer. It is generally
possible to use the ‘replay’ aspect of capture/replay tools for data load if data can be input
through the user interface.

• Environment analysis. Can compare file hierarchies, environmental variables, versioning etc.
Can be as simple as a set of sort and comparison commands. Useful if run to compare version
to version – but can be even more useful if run very frequently to spot unexpected changes.

• System insight. Static tools look at the code without executing it; some spot complexity and
dead code – others allow you to strip out hard-coded values and error messages. Dynamic
tools look at the system as it is working. InCTRL5 will tell you about changes made to the file
system and registry on machines running Windows variants, Dependency Walker will tell you
about modules loaded, while Holodeck can tell you about processes and system calls. Some
testers watch the CPU monitors and listen to the disk chatter to get an idea of what the system
is doing. Network analysis tools can give an invaluable insight into how a system interacts
with other entities, and log readers (of the software or the wider system) can show up errors
and race conditions that can help diagnose an intermittent problem. It is often possible to use
the ‘capture’ aspect of capture/replay tools to get an insight into the workings of a GUI or web
interface.

• Information interchange. Issue trackers can be used to track far more than bugs (e.g. tests,
customer interactions, enhancements, test process issues), and their collating, ranking and
sorting functionality can take the drudgework out of many project management tasks. ‘Blog’s,
‘Wiki’s and discussion threads allow an otherwise dispersed group to discuss, disperse, record
and access information in a reliable, scalable and timely way.

3.1. Automated metrics
Automated metrics have become simpler to collect. A web interface can be used to manually enter
information into a central database as it becomes available. Some tools produce XML, or can be
automated to send information. Utilities such as ‘curl’ (a Unix tool) can capture output from tools that
have web pages, but no export facility. Information from tools as varied as test management, test
execution, bug tracking and customer support can be gathered centrally.
Summaries of this project and product information can be generated in real time, and displayed to
anyone with authorisation and an appropriate connection, encouraging openness and agility. This
display is sometimes known as a ‘test dashboard’ (a parallel concept to a ‘project dashboard’). It can
make prioritisation simpler, and can help the team to make decisions more rapidly and more frequently.

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 6 of 11 Version 0.1

Of course, the value of the data is only as good as the quality of the input, and the collection and
summarisation is open to flaws and misinterpretation. However, it is an important step forward from
the once-a-week graph posted on a noticeboard in the kitchen.

4. Techniques
There are many possible test techniques, and although the choice may be limited by available skills and
technology, some approaches are more effective than others. This section details a way to make some
common approaches more efficient, and a way to get more out of any given approach.
Many test techniques have an associated measurement of coverage. Coverage allows the tester to
measure how much of the system has been tested – high coverage allows confidence that the testers
should have had a good opportunity to observe any errors that may be lurking. The most basic measure
of coverage is [(completed tests) as a proportion of (planned tests)].
Many techniques ultimately arrive at test cases by combining possible options. With more than a few
possible options, this can easily result in a dauntingly large planned test set, and adequate coverage can
appear entirely out of reach. It is possible, however, to use an approach called ‘pairwise combinations’
to cherry-pick an effective test set from this huge range. This best set includes all possible pairs of
options rather than all possible combinations of options, and can reduce the size of the test set by many
orders of magnitude. Indeed, the larger the set of possible tests, the more dramatic the reduction. You’ll
need a tool to do pairwise combinations on worthwhile sets – see the appendix for link/references.
There are many ways of measuring coverage. Sadly, many are incompatible; good coverage in terms of
[lines of code executed / number of lines of code] does not necessarily imply good coverage in terms of
[requirements checked / requirements stated]. Furthermore, measuring done-ness as a proportion of an
ideal of completion is not possible with open-ended sets such as negative tests and generated model-
based tests. Retaining a coverage-based approach at all points may give a false sense of confidence, but
not actually help find more problems.
Many problems are not discovered by a planned approach, but discovered while doing a planned
approach. This subtle distinction can be put to your advantage, by increasing the chance of discovery.
Using a variety of test machines, testers, paths through the system and data can reveal unexpected
problems (ones that often cause the comment ‘but it can’t affect the system like that’). Problems can
also be revealed by use of appropriate tools to give insight into the system (see ‘System insight’ tools
in the section on automation above).
Once the failures have been noticed, testers should go through a process of diagnosis to isolate the
fault. Once the fault is verified, testers can seek to discover similar faults by reverse-engineering a new
test set to pick up similar problems. It may be possible to identify the error or root-cause, and address
these by static tests, reviews or process adaptation.
Some techniques are used solely because they are familiar to the team, or have been used throughout
the life of a product. There may well be more effective techniques available – part of the process of
ongoing improvement is to become aware of possible alternatives, and to be able to assess their value.

5. Ongoing improvement
While tools and techniques may bring immediate, tangible gain, they don’t always lead to a sustained
change. This section looks at ways of introducing a strategy for ongoing improvement in the test team,
leading to sustained productivity gains through increasing the range and depth of skills in the test team.

5.1. Training and Coaching
Software testing is a broad discipline, needing highly technical approaches supported by a good
understanding of softer skills. While many general course providers cover appropriate aspects of
management, negotiation and teamwork, a number of testing-specific course providers cover the more
technical end of this spectrum – particularly tool use and certification (UK market).
Training is an effective, systematic way of giving people the skills they need to do a defined task.
Typically, a training course is the first time that an approach has been formally introduced to most
delegates, and one or two trainers take their class through a generic set of information and exercises.
Training is intensive, and the trainee is lost to his or her team for the duration of the course.
However, training does not teach a team member when to use these skills, or how to be a better tester.
Typically, this is learnt on the job, from other members of the team, through a process of coaching.

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 7 of 11 Version 0.1

Coaching is an altogether more intimate relationship, with an emphasis on tailored feedback and highly
specific challenges. The tester is often encouraged to follow their own path, rather than follow a pre-
defined route, and coaching tends to be an ongoing, long-tem and intermittent process of small-scale
intervention.
Coaching is a very effective way of getting more from a team, in particular by growing those skills that
are directly focussed on the project in hand. Coached skills tend to be learnt by practice and example,
and so are harder to forget than skills learnt in a classroom or lecture. The activity of coaching can be
rewarding to both participants, and encourages respect and communication within the team – and the
roles are often reversed for different skill sets. It reduces the dependence on a single person’s skill set
by distributing their skills more widely. Indeed, as coaching is an effective way to leverage experience
within a team, it may be appropriate to bring a person into a team on a temporary basis for the express
purpose of working with the team to bring their skills and processes to a different level. This is
particularly useful when moving to a new strategy – from manual testing to a more automated
approach, from scripted to exploratory, or vice-versa.
Coaching needs to be actively encouraged. Without active encouragement, team members may not feel
they can take the time from their stated, urgent tasks to coach each other. Indeed, coaching is itself an
acquired skill, and some experienced people in the team may not feel comfortable coaching their peers
– or being coached. From the point of view of time spent, it is important to realise not only the benefits
that accrue, but also that most coaching happens while both participants are doing their jobs, and that
they continue to be productive.

5.2. Learning alone
A motivated team member will want to extend their skills beyond those immediately available through
training and coaching. This should be encouraged, and a wide variety of sources of information are
available.
A shelf-full of testing books costs less than the average ISEB certification course or a day of
consultancy fees – and while they may not be in constant use, they can provide a deep well of
knowledge and experience when needed. To encourage learning as well as use, it may be necessary to
provide a quiet space, or self-study time.
Software testing has few periodicals. STQE is perhaps the most widely read in the UK and US, and
Professional Tester is a lower-cost, well-distributed UK magazine. Wiley’s more Software Testing
Verification & Reliability is more expensive, and more academic.
The Internet allows access to an unprecedented range and depth of practical information about software
testing. As with all information on the net, much of it has to be taken with a pinch of salt, but it is
possible to not only discover unconsidered alternatives, but also to interact with consultants, experts
and practitioners. Software testers can feel isolated in an organisation; the Internet provides an
opportunity to become part of a genuine community. Details of Internet resources are given in the
appendix.

5.3. Team learning
As individual team members gain knowledge about test techniques, it may be productive to encourage
them to present this information to the team. This not only spreads information, but encourages
discussion and an active interest in application of the techniques. Team learning can also be highly
effective when then system under test is changing rapidly, as individuals who have worked on changed
areas can present a focussed description of the changes to their team. It is best to keep these
presentations brief and informal, and to allow in-depth discussion between interested parties to happen
off-line.
Teams can improve shared skills such as estimation and bug logging if the processes that record the
results of those skills have a fast feedback between action and effect. For instance, revealing the
difference between estimated time needed and actual time taken at the point where the time taken is
recorded allows both the designer and executer of the task to consider any differences – and perhaps
work toward improving the accuracy of the next estimate.

5.4. Supporting the process
Feedback is vital when developing a process of ongoing improvement. Some feedback is neutral, and
may be automated – a test dashboard showing overall progress in real time is an important tool not only

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 8 of 11 Version 0.1

for planning and reacting, but also to help the team learn. Some feedback is more personal; reviews of
activities and deliverables are necessary to allow improvements to be identified and prioritised.
Reviews can be uncomfortable, and the reviewer should take care to review the product rather than the
person.
Motivation is important to learning. A happy team generally learns with less resistance, and retains the
learnt information for longer.
Individuals who feel responsible for a particular task are more likely to want to improve that task, and
giving responsibility through genuine ownership is a powerful tool to arriving at an improved piece of
work. Genuine ownership is supported by a management approach that is hands-off and nurturing by
turns, and it is vital to let the owner feel that they are empowered with the time and support to change
the process if needed.
Not all testers have an appreciation of the wider world of testing. Encouraging team members to
interact with testers outside their team can give renewed enthusiasm and an understanding of the scope
and variety of possible approaches. Wider interaction can also encourage team members to see a viable
career in testing, which may itself increase motivation and promote self-improvement.
A team that wants to steadily improve its work has to recognise that the improvement is itself a piece
of work, and needs time and energy devoted to it. Mistakes are a necessary part of the process, as is
moving on from established practices – and some of the time spent will be spent badly. Using a time
bank, or a budgeted proportion of time spent on other activities, can help to keep the process going
through troubled times.

6. Communication
Effective communication allows ideas and problems to be shared and allows the team to work to the
strengths of its members. Some teams already communicate well. Others regularly work under
headphones, indulge in the well-known “us and them” attitude, and don’t share work. These teams are
more likely to log duplicate bugs, and less likely to pull together toward improving their work.
Some ideas to encourage effective communication include:

• Testing in pairs is a great way to see new bugs and techniques, and encourages an effective
working relationship between team members.

• A testing dashboard showing real-time metrics and progress not only provides important
feedback to a team, but can encourage other teams to trust the testers. By communicating
information in real-time, it is seen as ‘un-fakeable’, and gives an insight into the cycles of
work that characterise testing.

• Communication outside the team can give a greater understanding of the business and its
customers. It can also forge political and personal links.

• Coaching and peer-presentations can help individuals to feel more at ease in making their
voices heard – and can encourage the team to both respect and question the views of their
peers.

• Bug reviews not only reveal hidden patterns of problems, but can bring the team together in
an understanding of characteristic flaws. It may also help to improve logging standards.

• Suggestions. Suggestions can be large and small, may be anonymous, and should be reviewed
and discussed rapidly and regularly. Most suggestions will be discounted, but should be kept
to generate ideas later.

• Instigating a regular, budgeted meeting for the whole team to discuss the current approaches
and ways that they could change or be improved. Shorter, more frequent meetings can help the
team avoid getting blocked by a single issue.

• A ten-minute daily meeting to discuss today’s plans and yesterday’s events.
• Lunches together. You may want to ban ‘shop’ talk at these lunches – or they could be

sponsored by the company if they are to take a discussion out of a formal meeting (see note
above about stolen time).

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 9 of 11 Version 0.1

7. Low-cost, high-value resources
Software testing is a specialised discipline. Some tests cannot be done reliably without expensive tools
– but it is worth recognising that the fragmented nature of the industry does not encourage efficient
competition. Some tools are over-priced, and under-used. Some are valuable, and inexpensive.
It should be noted that the greatest expense of tools lies in implementation and training, and not
generally in licensing cost. However, cheap tools allow the test team to experiment with approaches
and discover potential without having to justify capital expenditure.

7.1. Tools
Microsoft Excel is the Swiss Army knife of software testing. Other spreadsheets and similar tools exist,
but Excel’s flexibility and ubiquity makes it the key customisable tool for many testers. Most
companies have at least one copy installed and paid for.
A modicum of expertise in Excel can pay huge dividends in:

• Data generation, data manipulation
• Test case generation
• Test management and tracking
• Defect management and tracking
• Data analysis
• Metric collection, summarising and reporting

Testers can be greatly helped by knowledge of the following areas:
• Effective data labelling
• Data filtering
• Mathematical and statistical formulae
• ‘Array formulas’
• Pivot tables
• Absolute and relative cell referencing
• Scenarios
• Conditional formatting
• Conversion of columnar data to comma-separated
• Parsing text data to columns
• Graphing

It is important to remember that Excel is no substitute for a database. For test and issue management, a
tool that handles one-to-many relationships is a better fit than a list handler, and a relational database
offers a different kind of power. Microsoft Access, PostgreSQL and (open-source) MySQL are all
capable and cost-effective/free databases. MySQL, in particular, is fast, scalable (within the needs of
most test teams) and portable.
It is becoming simpler to write dynamic web pages for internet/intranet use. Again, open-source tools
such as PHP, Ruby and Python allow experimentation without investing in a tool up-front. They also
attract coders who develop generalised libraries of common functionality.
Defect trackers used to be expensive. Now, tools such as Bugzilla offer a powerful open-source
alternative for self-hosting. Internet services such as Elementool offer instant access to a robust,
generalised, remotely hosted system – and often offer to manage a number of issues for free. Payment,
when necessary, is monthly and can be based on a per-project cost, rather than a per-seat. If you plan to
build on these services, ensure that your valuable data can be exported for re-purposing.
Macro players exist in a variety of forms on many platforms, and are usually cheap. If they have the
capability to perform conditional logic on data drawn from a file, it is possible to use them for
automated testing and data load. Note that it may be far simpler to re-use data-driven tests with a
different tool that it is to re-code scripted tests. Most capture/replay tools are expensive. However,
Vermont High Test is a tool priced under $300 that offers many of the capabilities of more expensive
tools.
Many tools can be re-purposed and used for testing. InCtrl5 was designed to help users see the changes
after installing a new package to a Windows PC. It is a great tool for testing installation, upgrades,
uninstalling – but is also useful to spot unexpected changes that have been caused by normal use of a

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 10 of 11 Version 0.1

system. Danny Faught has put together a list of free / open-source tools that can be used for testing, and
James Bach’s paper ‘Improving your testing superpowers’ is another useful reference. Note that
licensing issues and your company’s software policy may mean that use of open-source tools may need
be restricted or partitioned to non-production systems.
Holodeck is a (windows-based) tool that lets you monitor and affect the interactions of an application
with the platform it is running on. It has been shipped as a free tool on two books, is available for
download, and allows an unparalleled insight into the detailed workings of a running application.

7.2. Information
A large amount of information is available on the internet. Much of it is available for free or at a
nominal cost.
Participating in a discussion group, a moderated forum or one of StickyMinds’ roundtables can expose
an otherwise isolated tester to a wide variety of business practices and test possibilities. Discussion
groups are generally free to join, and are frequented by consultants and subject-matter experts. They
are excellent places to get focussed suggestions to intractable problems. For instance, the tool-specific
groups on Betasoft’s QA forums allow your team to not only discuss common problem with other tool
users, but also gain an understanding of the real value and uses of the tools.
Many consultants promote their practice and extend the discipline of software testing by publishing
papers at conferences. These papers are usually available in the conference proceedings – but many
consultants also make these papers available from their own websites. Some consultants write
newsletters, ‘Blog’s or brief articles published only on the web. Tool vendors and larger service
providers also publish white papers, which are generally available for free or as a swap for your email
address.
Some websites act as information hubs. These generally provide links to further websites, but some
have content of their own. StickyMinds is the largest of these – it allows some general use, but offers
enough incentives to make its ‘PowerPass’ full access an attractive option. An interesting new site is
testingeducaction.org, a website set up with a grant from the National Science Foundation of the U.S..
It contains papers and course notes from a variety of consultants, with a particular emphasis on those
aligned with the ‘context-driven’ school of testing.

8. Conclusion
Changing circumstances, skills and constraints introduce a variety of opportunities for improvement.
Without a policy of ongoing improvement, these opportunities can be lost, and the existing skills and
efficiencies of the team threatened. An effective team needs to actively seek and encourage
improvement.
To take advantage of these opportunities, teams – and the individuals that form them – need to be able
to experiment with different approaches. It is easier to justify these excursions if time has already been
set aside to look at viable alternatives to existing practice. This time needs to be budgeted for, or found.
Finally, it is often easy to see an ever-increasing need for testing. Rather than being overwhelmed by
the volume, it is better to interpret this as a need for better testing, not more testing.

© Workroom Productions Ltd. 2003

Software Testing - Papers

From a Sow's Ear to a Silk Purse MTM_paper.doc

29 May 2003 11 of 11 Version 0.1

9. Appendix and references
Note – the author has no commercial links with any of the tools, vendors, consultants or service
providers listed in this paper. All recommendations are based on personal experience, and you should
assess your own situation before taking any decisions. Your mileage may vary.
See http://www.workroom-productions.com/MakingMost.html for updates to this list.

9.1. Web links for tools
• Testing FAQ’s Tools list (see descriptions for freeware/open source): http://www.testingfaqs.org/

• Opensourcetesting.org’s list of, you guessed it, open source testing tools: http://opensourcetesting.org/

• Danny Faught's initial article (small list; list of 100+ not yet publicly available):
http://tejasconsulting.com/DFWUUG/freewaretools.html

• Danny Faught’s recent article on StickyMinds:
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=6454

• James Bach's cheap tools article: http://www.satisfice.com/articles/boost.htm

Direct links to tools.

• Elementool (issue tracking service, first 200 issues free) - http://www.elementool.com/

• InCtrl5 - http://www.pcmag.com/article2/0,4149,25126,00.asp - note: no longer free (!)

• Vermont High Test (cheap-ish capture/replay) - http://www.vtsoft.com/

• Bach's ‘pairwise’ tool can be accessed by a link from http://www.satisfice.com/testmethod.shtml

• Holodeck http://www.se.fit.edu/projects/holodeck/

9.2. Web links for information
Test information hubs

• StickyMinds http://www.stickyminds.com/

• Testing Education site http://www.testingeducation.org/

• Software QA Test Resource Center http://www.softwareqatest.com/index.html

Magazines

• STQE http://www.stqemagazine.com/

• Professional Tester http://www.professionaltester.com/

• Software Testing Verification & Reliability http://www.interscience.wiley.com/jpages/0960-0833/

Consultants with available papers / active websites (small selection)

• James Bach (Satisfice): http://www.satisfice.com/

• Cem Kaner (F.I.T.): http://www.kaner.com

• Elizabeth Hendrickson (Quality Tree): http://www.qualitytree.com/

• Brian Marick: http://www.testing.com/

• Bret Pettichord (Pettichord Consulting): http://www.pettichord.com/

• Robert Sabourin (AmiBug): http://www.amibug.com/

• Esther Derby (Esther Derby Associates): http://www.estherderby.com/

Discussion Groups (small selection)

• QA Forums from Betasoft http://www.qaforums.com/

• comp.software.testing (on google groups)

• StickyMinds roundtable http://www.stickyminds.com/roundtable.asp?tt=RoundTables

Pairwise testing paper: The Combinatorial Design Approach to Automatic Test Generation

(IEEE Software September 1996, pp. 83-87) – Cohen, Dalal, Praelius, Patton

http://www.argreenhouse.com/papers/gcp/AETGissre96.shtml

