
There's a game in an arcade, on a pier near here. You face a board full of
holes, and you get ready with a big, soft mallet. The game starts - a mole
pokes its head out of a hole. You whack it, and it goes away. Another mole -
two moles - you whack both of them. One mole - whack. Long pause. Three
moles - whackwhackwhack. You get points for whacking moles. Sometimes,
you won't notice a mole, sometimes more moles appear than you can easily
deal with. Moles left standing go away after a while - you get no points for
those moles.

Welcome to my world of exploratory testing. As I explore software, interesting
things pop up.

Is it a bug? Whack.

Another interesting thing. Not sure if it's a bug - is there another test?
Whackwhack.

Long pause.

Interesting thing! Whackwhackwhack . . . and it's not as interesting any more; I
can move on.

Sometimes, I see lots of interesting things. Sometimes, I miss interesting
things. Unlike moles, I can come back to the interesting things later, so
sometimes I just write them down. All well and good, but how can I tell what's
interesting? I use my judgement.

- = = -

Judgement's a tricky fellow to pin down. In the real world, judgement is about
decisions. Important decisions; deciding whether something is good or bad -
and by how much. Deciding if something needs to be done, right now, or if it
can be left for a while. Judgement should be impartial, consistent, defendable
- which feels like testing to me. Testing and judgement are entwined.

This perhaps explains why I get so irritated (in a positive, polite, but above all
internal way if you're a client of mine) when some fool of a tester tells me that
they can't even start to tell me where the problems might be without a
complete specification. Or if I'm showered with indiscriminate defect reports
from some spec-less bug-jockey who simply decides that everything they don't
personally like is and has to be a fundamental flaw in the code, the
technology, the design, even unto the very soul of the poor forgotten
programmer who first laid calloused hand to Qwerty. Where's their [expletive
deleted] judgement? Where's my mallet?!

- = = -

Enough. Nothing's perfect. They're not bad people. Calm. Relax. Breathe.

Let me tell you what I use to judge bugs. Then, I'll tell you how important
judgement is to finding good bugs as easily as possible.

I have a framework to help me judge bugs. Not a scale - it is, it might be, it isn't
- but a framework, a set of ways of thinking about what I find. Not an exclusive
classification, either; things can be interesting for more than one reason. All
the better. There's no first or second pass, no process; I try to keep the whole
framework in mind. It isn't hard as I've made it sound, so let's give it a go.

When I explore, I think about inconsistencies, absences, extras. Does a
button work in a different way there from here? Why has the system forgotten
my data? Does it look like there's another way of doing this?

I also try to identify what I might be comparing against. Something internal to
the system I'm working with, perhaps - another screen, an older version, a
different account. If not internal, then something external. Either something
specific, like a dictionary, a timetable, (heaven forbid) a specification - or
something cultural, like a way of working, a general principle, an expectation.

Some examples would help, and you'll find some at the bottom of the page.
However, it's important to understand that I'm not looking for these examples,
nor am I necessarily thinking of what to look for before looking for it. Instead,
I'm exploring the system, looking at the system. I'm thinking, at the back of my
mind, of my framework. My subconscious does a better job of noticing
interesting things than my conscious (which is generally better at
concentrating on them). The framework sits between the two. As I explore the
system, interesting things appear - this framework helps me notice them more
easily, and understand something perhaps about why they're interesting.

- = = -

Some fundamental process of the mind allows me to separate the interesting
from the dull, the important from the noisy, the unusual from the expected. The
shape from the shadows - the tiger, indeed, from the jungle. Some things I
miss - and some things I do notice aren't really there. If I can judge whether
something is interesting, or is not - impartially, consistently, and in a way that
I'm sure I can defend my position - my choices are more clear, my decisions
more supported, my exploration more focussed.

It seems, too, that I get better with practice - the more I use the framework, the
better I am at noticing the subtler things, the better I am at filtering out the false
positives. My subconscious, eager to please, responds to feedback. When I
learnt to drive, every corner, every tree, every cyclist occupied my all-too-
thinly-stretched attention. Now, something tells me when the pedestrian hasn't
seen me, when that driver's turning without using his indicators. My judgement
has (we hope) improved. Exploration is the same. As ever, there's a virtuous
circle here, if you can just get on the ride: Good judgement is consistent.
Consistent feedback helps you learn. What you're learning is to be a better
judge.

- = = -

Consciously using your noggin is good for the soul - and it makes you a better
tester. But there's more. Judgement lets one refine ones exploration. Let's look
at some situations where judgement plays an integral part in test design.

First, something trivial. A button is labelled 'stap'. It's interesting, because we
don't recognise the term. That's obvious to us because we're English
speakers, the application's in English, and stap isn't in the dictionary. The
label is inconsistent with an external specification. Do we even need to
check? Probably not. It's a buggety bug. Let's log it and keep on going.

A more subtle one now. Let's imagine the button is labelled 'step'. It's not as
interesting, doesn't stick out as much, because step is in our personal lexicon.
We've noticed it, but we need more tests to decide if it's a bug. Press the
button. It appears that the button stops a clock. A spelling mistake, just like the
previous example? Press it again - the clock restarts. Hmm. Perhaps step is
an appropriate label after all.

We didn't have enough information to judge, so we kept going. Where next?
Internally? Is there another button with the same function - what's its label?
Externally - a real spec? an cultural inconsistency like an unwritten rule, a
customer expectation? Off we go.

- = = -

Working with a framework for judgement drives us to test, and test again, until
we have a better idea of what we're dealing with. A framework for judgement
is important because it leads along the path from less to more certainty,
indicating alternate understandings along the way.

However, recognition and judgement don't always go together. Internal
inconsistency is easy to spot - and hard to judge. A red button here - a green
button there: You can be sure that one of them is wrong. Perhaps they both
are. If there are no other clues, that's all you've got. Log the difference, and
move on. Testers don't change lightbulbs, they just tell you the room's gone
dark.

- = = -

External inconsistency is tricker to spot - you need to have a clue what's
outside the system to compare with. Without an understanding of what's
outside, you can't hope to spot an inconsistency. If you've read every scrap of
documentation, you might find it easier to recognise problems against the
specification. If you've got plenty of customer experience, you might find it
easier to recognise unwritten problems.

However, if the external sources are impeccable, you've found a bug. Not all

sources are. Specifications are often wrong - you'll have to judge. Sometimes
you'll judge against a standard. If compliance is mandatory, and the standard
is wrong, you'll just have to bend your application to suit. Of course, if you're
dealing with user expectations, the customer is always right.

- = = -

It's not just about inconsistency. Perhaps something is interesting because it is
missing, or has been added. If you restrict yourself to thinking of software
components, the difference between these two is often one of versioning - 1.0
does, 1.1 doesn't. If you think of external sources, ideas of what might be
missing, or what might be included, become much more interesting.

This is my simple framework. It doesn't say much about time, or about
multiples. It doesn't help me judge against exploitations, technologies, styles
of use, attacks. Since I notice these things, and can judge one to be more
worthy of my attention than others, I assume that I have more frameworks. I've
not yet uncovered what they might be. If this is familiar to you, perhaps you
have your own frameworks. Perhaps you already have an idea what they are -
I look forward to hearing about them from you. In the meantime, though, I'll
leave you with these examples, and let you get on with your thinking.

Internal External: Specific External: Cultural

Inconsistency

The address has
three lines here -
but four over
there
Usually that
beast explodes
when I shoot it
with the railgun
Seems to have
got faster just
now

The spec says I
should be
prevented from
doing this
This file won't
make sense at
the interface
London is on the
east coast
The timetable
says no trains
after 12:30

People want to
see their total on
the first page
This takes too
long to start up
What do you
mean, 'state' is a
required field?
Midnight is not
downtime for this
cab company

Absence

Last version, I
could address an
email from here
Where'd the
button go?

I should be able
to add a column
There is no
character
validation on this
field
I can't see the
two-player mode

This field is too
small for my
email address
Where's the
privacy policy?
These people
have no
manners

Extra

Where'd that new
button come from
?
Three places I
can change the
title - do they all
change the
filename?
If I had two
logins, how
would it decide
which to listen
to?

There's nothing
in the spec about
this easter egg
Does the spec
actually include
paste-via-keys?
Looks like I can
insert a picture
after all

Isn't that my
password?
But I don't want
to 'show
everybody that I
am idle'
Puce? I'm going
to spend all day
looking at puce?

Internal External: Specific External: Cultural

Inconsistency

The address has
three lines here -
but four over
there
Usually that
beast explodes
when I shoot it
with the railgun
Seems to have
got faster just
now

The spec says I
should be
prevented from
doing this
This file won't
make sense at
the interface
London is on the
east coast
The timetable
says no trains
after 12:30

People want to
see their total on
the first page
This takes too
long to start up
What do you
mean, 'state' is a
required field?
Midnight is not
downtime for this
cab company

Absence

Last version, I
could address an
email from here
Where'd the
button go?

I should be able
to add a column
There is no
character
validation on this
field
I can't see the
two-player mode

This field is too
small for my
email address
Where's the
privacy policy?
These people
have no
manners

Extra

Where'd that new
button come from
?
Three places I
can change the
title - do they all
change the
filename?
If I had two
logins, how
would it decide
which to listen
to?

There's nothing
in the spec about
this easter egg
Does the spec
actually include
paste-via-keys?
Looks like I can
insert a picture
after all

Isn't that my
password?
But I don't want
to 'show
everybody that I
am idle'
Puce? I'm going
to spend all day
looking at puce?

